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Chapter one 

Preface 

Open channel flow occurs when a liquid 

flowing due to gravity is only partial 

enclosed by its solid boundary. The flow 

in an open channel or in a closed conduit 



having a free surface is referred to as 

free-surface flow or open-channel flow. 

Here the only force affected is the 

gravitational force. Some open channel 

flow occurs naturally as in the case of 

creeks and rivers, which have generally 

irregular cross sections A varies with 

depth. Open channel flow may also 

occurs in artificial (i.e human 

construction) channels such as flumes 

and canals. If there is no free surface and 

the conduit is flowing full, then the flow 

is called pipe flow, or pressurized flow. 



 
b- Open channel 
 

 
Pipe or pressurized flow 
 



 
Combined free surface and pressurized 

flow 

 

If we want to compare pipe flow and 

open channel flow 

 
 



 
 
In pipe flow 

1- The flow is due to pressure 

difference 

2- There is no free surface 
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(Bernollies eq.) 

 

Open channel 

1- The flow is due to the slope of the 

bed 



2- The hydraulic line is the water 

surface  

3- The pressure is atmospheric 

The same eq. applied on open channel 

𝒚𝟏 + 𝒁𝟏 +
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+ 𝒉𝑳 

 
 

𝒑

𝜸
= 𝒑𝒓𝒆𝒔𝒔𝒖𝒓𝒆 𝒇𝒐𝒓𝒄𝒆 (𝒎) 

Z= gravity force , V2/2g= inertia force 
(velocity head), hL= losses or viscous force 

 

Classification of flow in open channels 

Based on different criteria, free-surface 

flows may be classified into various 

types 

1- Steady and Unsteady Flows 



If the flow velocity at a given point 

does not change with respect to time, 

then the flow is called steady flow. 

However, if the velocity at a given 

location changes with respect to time, 

then the flow is called unsteady flow. 

Note that this classification is based on 

the time variation of velocity v at a 

specified location. Thus, the local 

acceleration, ∂v/∂t, is zero in steady 

flows. In two- or three-dimensional 

steady flows, the time variation of all 

components of velocity is zero. 

 

2- Uniform and Non-uniform flows 

If the flow velocity at a given instant of 

time does not vary within a given 

length of channel, then the flow is 

called uniform flow. However, if the 

flow velocity at a time varies with 



respect to distance, then the flow is 

called non-uniform flow, or varied flow. 

This classification is based on the 

variation of flow velocity with respect 

to space at a specified instant of time. 

Thus, the convective acceleration in 

uniform flow is zero. In mathematical 

terms, the partial derivatives of the 

velocity components with respect to x, 

y, and z direction are all zero. However, 

many times this strict restriction is 

somewhat relaxed by allowing a non-

uniform velocity distribution at a 

channel section. In other words, a flow 

is considered uniform as long as the 

velocity in the direction of flow at 

different locations along a channel 

remains the same. Depending upon the 

rate of variation with respect to 

distance, flows may be classified as 



gradually varied flow or rapidly varied 

flow. As the name implies, the flow is 

called gradually varied flow, if the flow 

depth varies at a slow rate with respect 

to distance, whereas the flow is called 

rapidly varied flow if the flow depth 

varies significantly in a short distance. 

Note that the steady and unsteady flows 

are characterized by the variation with 

respect to time at a given location, 

whereas uniform or varied flows are 

characterized by the variation at a given 

instant of time with respect to distance. 

Thus, in a steady, uniform flow, the 

total derivative dV/dt = 0. In one- 

dimensional flow, this means that ∂v/∂t 

= 0, and ∂v/∂x = 0. In two- and three-

dimensional flow, the partial 

derivatives of the velocity components 

in the other two coordinate directions 



with respect to time and space are also 

zero. 

The flow can be steady uniform  or 

steady non uniform but  unsteady 

uniform flow (impossible case) 

3- Laminar and Turbulent Flows 

The flow is called laminar flow if the 

liquid particles appear to move in 

definite smooth paths and the flow 

appears to be as a movement of thin 

layers on top of each other. In turbulent 

flow, the liquid particles move in 

irregular paths which are not fixed with 

respect to either time or space. The 

relative magnitude of viscous and inertial 

forces determines whether the flow is 

laminar or turbulent: The flow is laminar 

if the viscous forces dominate, and the 

flow is turbulent if the inertial forces 

dominate. The ratio of viscous and 



inertial forces is defined as the Reynolds 

number, 

𝑹𝒆 =
𝒗 𝒍

𝝑
 

in which Re = Reynolds number; V = 

mean flow velocity; L = a characteristic 

length; and ν = kinematic viscosity of the 

liquid. Unlike pipe flow in which the 

pipe diameter is usually used for the 

characteristic length, either hydraulic 

depth or hydraulic radius may be used as 

the characteristic length in free surface 

flows. Hydraulic depth is defined as the 

flow area divided by the top water-

surface width and the hydraulic radius is 

defined as the flow area divided by the 

wetted perimeter. The transition from 

laminar to turbulent flow in free surface 

flows occurs for Re of about 500, in 



which Re is based on the hydraulic radius 

as the characteristic length. 

If Re< 500 or 600  laminar flow 

Re= 500-2000 transition flow 

Re>2000 turbulent 

Subcritical, Supercritical, and Critical 

Flows 

A flow is called critical if the flow 

velocity is equal to the velocity of a 

gravity wave having small amplitude. A 

gravity wave may be produced by a 

change in the flow depth. The flow is 

called subcritical flow, if the flow 

velocity is less than the critical velocity, 

and the flow is called supercritical flow 

if the flow velocity is   greater than the 

critical velocity. The Froude number, Fr, 

is equal to the ratio of inertial and 

gravitational forces and, for a rectangular 

channel, it is defined as 



𝐹𝑟 =
𝑉

√𝑔𝑦
 

in which y = flow depth.  Depending 

upon the value of Fr, flow is classified as 

subcritical if Fr < 1; critical if Fr = 1; 

and supercritical if Fr > 1. 

 

Terminology, Nomenclature 

Channels may be natural or artificial. 

Various names have been used for the   

artificial channels: A long channel 

having mild slope usually excavated in 

the ground is called a canal. A channel 

supported above ground and built of 

wood, metal, or concrete is called a 

flume. A chute is a channel having very 

steep bottom slope and almost vertical 

sides. A tunnel is a channel excavated 

through a hill or a mountain. A short 



channel flowing partly full is referred to 

as a culvert. 

A channel having the same cross section 

and bottom slope throughout is referred 

to as a prismatic channel, whereas a 

channel having varying cross section 

and/or   bottom slope is called a non-

prismatic channel. A long channel may 

be comprised of several prismatic 

channels. A cross section taken normal to 

the direction of flow (e.g., Section BB in 

Fig. 1) is called a channel section. The 

depth of flow, y, at a section is the 

vertical distance of the lowest point of 

the channel section from the free surface. 

The depth of flow section, d, is the depth 

of flow normal to the   direction of flow. 

The stage, Z, is the elevation or vertical 

distance of free surface above a specified 

datum ( Fig.1). The top width, B, is the 



width of channel section at the free 

surface. The flow area, A, is the cross-

sectional area of flow normal to the 

direction of flow. The wetted perimeter, 

P is defined as the length of line of 

intersection of channel wetted surface 

with a cross-sectional plane normal to the 

flow direction. The hydraulic radius, R, 

and hydraulic depth, D, are defined as 

𝑹 =
𝑨

𝑷
   𝒂𝒏𝒅  𝑫 =

𝑨

𝑩
 

 

 
Fig 1 Typical cross section 

 

Chapter 2 



Velocity and Pressure Distribution 

The flow velocity in a channel section 

varies from one point to another. This is 

due to shear stress at the bottom and at 

the sides of the channel and due to the 

presence of free surface. Fig. 2 shows 

typical velocity distributions in different 

channel cross sections. 

The flow velocity may have components 

in all three Cartesian coordinate 

directions. However, the components of 

velocity in the vertical and transverse 

directions are usually small and may be 

neglected. Therefore, only the flow 

velocity in the direction of flow needs to 

be considered. This velocity component 

varies with depth from the free surface. 

A typical variation of velocity with depth 

is shown in Fig. 3. 



 
Fig.2 velocity distribution 

 

 



Fig. 3 Typical velocity variation with 

depth 

Vs= surface velocity, vs is not max 

because of the secondary currents, max 

velocity at (0.05-0.25) y.  In the field 

measurements v0.6 is average or vave is 

𝑣𝑎𝑣𝑒 =  
𝑣0.2 + 𝑣0.8

2
 

 

  
𝑣𝑎𝑣𝑒 =  𝑘 × 𝑣𝑠 

K= 0.8- 0.95     is determined from field 

calibration is different from river to 

another. 

 

 

Energy Coefficient (velocity 

coefficient) 

There is always the assumption of a 

constant velocity across the whole 



section of the flows but this is never true 

in practice because viscous drag makes 

the velocity lower near the solid 

boundaries. 

As discussed in the previous paragraphs, 

the flow velocity in a channel section 

usually varies from one point to another. 

Therefore, the mean velocity head in a 

channel section, (V 2/2g)m, is not the 

same as the velocity head, V 2m /(2g), 

computed by using the mean flow 

velocity, Vm, in which the subscript m 

refers to the mean values. This difference 

may be taken into consideration by 

introducing an energy coefficient, α, 

which is also referred to as the velocity 

head, or Coriolis coefficient. 

(
𝒗𝟐

𝟐𝒈
 )𝒎 ≠  

(𝒗𝒎)𝟐

𝟐𝒈
 



(v2/2g)m true mean velocity head 

 

BASIC CONCEPTS 

Referring to Fig. 4, the mass of liquid 

flowing through area ΔA per unit time = 

ρV ΔA, in which ρ = mass density of the 

liquid. Since, the kinetic energy of mass 

m traveling at velocity V is (1/2)mV 2, we 

can write  

Kinetic energy transfer through area ΔA 

per unit time 

=  
𝟏

𝟐
𝝆 𝑽 ∆ 𝑨𝑽𝟐      (1) 

=
𝟏

𝟐
𝝆  𝑽𝟑∆ 𝑨         (1) 

Kinetic energy transfer through area A 

per unit time 

=
𝟏

𝟐
𝝆 ∫ 𝑽𝟑𝑨        (2) 



 
Fig. 4 

 

It follows from Eq. 1 that the kinetic 

energy transfer through area ΔA per unit 

time may be written as (γV ΔA)V 2/(2g) = 

weight of liquid passing through area ΔA 

per unit time × velocity head, in which γ 

= specific weight of the liquid. Now, if 

Vm is the mean flow velocity for the 

channel section, then the weight of liquid 

passing through total area per unit time 

=γVm dA; and the velocity head for the 

channel section =αV 2m /(2g), in which α 

= velocity head coefficient. Therefore, 

we can write 



Kinetic energy transfer through area per 

unit time 

 

=  𝝆 𝜶𝑽𝒎  
𝑽𝒎

𝟐

𝟐
∫ 𝒅𝑨        (3) 

Hence, it follows from Eqs. 2  and 3 that 

𝜶 =   
∫ 𝑽𝟑 𝒅𝑨

𝑽𝒎
𝟑 ∫ 𝒅𝑨

              (4) 

α= correction coefficient for velocity 

distribution 

 

 

Figure 5 shows a typical cross section of 

a natural river comprising of the main 

river channel and the flood plain on each 

side of the main channel. 

The flow velocity in the floodplain is 

usually very low as compared to that in 

the main section. In addition, the 

variation of flow velocity in each 



subsection is small. Therefore, each 

subsection may be assumed to have the 

same flow velocity throughout. In such a 

case, the integration of various terms of  

Eq. 4 may be replaced by summation as 

follows: 

 

 
Fig. 5 Typical cross section 

 

𝜶 =   
𝑽𝟏

𝟑𝑨𝟏+𝑽𝟐
𝟑𝑨𝟐+ 𝑽𝟑

𝟑𝑨𝟑

𝑽𝒎
𝟑 ( 𝑨𝟏+𝑨𝟐+𝑨𝟑)

             (5) 

 

 

𝑽𝒎 =   
𝑽𝟏𝑨𝟏+𝑽𝟐𝑨𝟐+ 𝑽𝟑𝑨𝟑

( 𝑨𝟏+𝑨𝟐+𝑨𝟑)
           (6) 



By substituting Eq. 6 into Eq. 5 and 

simplifying, we obtain 

 

𝜶 =   
(𝑽𝟏

𝟑𝑨𝟏+𝑽𝟐
𝟑𝑨𝟐+ 𝑽𝟑

𝟑𝑨𝟑) (𝑨𝟏+𝑨𝟐+𝑨𝟑)𝟐

(𝑽𝟏𝑨𝟏+𝑽𝟐𝑨𝟐+𝑽𝟑𝑨𝟑) 𝟑
           

(7) 

Note that Eq. 7 is written for a section 

which may be divided into three 

subsections each having uniform velocity 

distribution. For a general case in which 

total area A may be subdivided into N 

such subareas each having uniform 

velocity, an equation similar to Eq. 7 

may be written as 

 

𝜶 =   
∑ (𝑽𝒊

𝟑𝑵
𝒊=𝟏 𝑨𝒊) .(∑ 𝑨𝒊)

𝟐
 

(∑ 𝑽𝒊𝑨𝒊) 𝟑
                      (8) 

 

Momentum Coefficient 



Similar to the energy coefficient, a 

coefficient for the momentum transfer 

through a channel section may be 

introduced to account for non uniform 

velocity distribution. This coefficient, 

also called Boussinesq coefficient, is 

denoted by β. An expression for this may 

be obtained as follows: 

 

BASIC CONCEPTS 

The mass of liquid passing through area 

ΔA per unit time = ρV ΔA. Therefore, the 

momentum passing through area ΔA per 

unit time = (ρV ΔA)V = ρV 2ΔA. By 

integrating this expression over the total 

area, we get Momentum transfer through 

area A per unit time 

 

= 𝝆 ∫ 𝑽𝟐𝒅𝑨           (9) 



By introducing the momentum 

coefficient, β, we may write the 

momentum transfer through area A in 

terms of the mean flow velocity, Vm, for 

the channel section, i.e., 

Momentum transfer through area A per 

unit time   = 𝜷𝝆 𝑽𝒎
𝟐 ∫ 𝒅𝑨          (10) 

 

 

Hence, it follows from Eqs. 9 and 10 that 

 

𝜷 =
∫ 𝑽𝟐𝒅𝑨

𝑽𝒎
𝟐 ∫ 𝒅𝑨

          (11) 

 

Theoretical values for α and β can be 

derived from the power law and the 

logarithmic law for velocity distribution 

in wide channels.  For turbulent flow in a 

straight channel having a rectangular, 

trapezoidal, or circular cross section, α is 



usually less than 1.15 Therefore, it may 

not be included in the computations since 

its value is not precisely known and it is 

nearly equal to unity 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1 values of  ∝ 𝑎𝑛𝑑 𝜷 

 



 
 

Pressure Distribution 

The pressure distribution in a channel 

section depends upon the flow 

conditions. 

Let us consider several possible cases, 

starting with the simplest one and then 

proceeding progressively to more 

complex situations. 

Static Conditions 

Let us consider a column of liquid having 

cross-sectional area ΔA, as shown in Fig. 

6. The horizontal and vertical 

components of the resultant force acting 



on the liquid column are zero, since the 

liquid is stationary. If p = pressure 

intensity at the bottom of the liquid 

column, then the force due to pressure at 

the bottom of the column acting 

vertically upwards = pΔA. The weight of 

the liquid column acting vertically 

downwards = ρgyΔA. Since the vertical 

component of the resultant force is zero, 

we can write this case U.F and GVF 

 
Fig . 6 Pressure in stationary fluid 

 



𝒑 ∆𝑨 =  𝝆𝒈 𝒚 ∆ 𝑨 

 

𝒑 =  𝝆𝒈 𝒚  
In other words, the pressure intensity is 

directly proportional to the depth below 

the free surface. Since ρ is constant for 

typical engineering applications, the 

relationship between the pressure 

intensity and depth plots as a straight 

line, and the liquid rises to the level of 

the free surface in a piezometer, as 

shown in Fig. 6. The linear relationship, 

based on the assumption that ρ is 

constant, is usually valid except at very 

large depths, where large pressures result 

in increased density. 

 
Horizontal, Parallel Flow 

Let us now consider the forces acting on 

a vertical column of liquid flowing in a 



horizontal, frictionless channel (Fig. 7). 

Let us assume that there is no 

acceleration in the direction of flow and 

the flow velocity is parallel to the 

channel bottom and is uniform over the 

channel section. Thus the streamlines are 

parallel to the   channel bottom. Since 

there is no acceleration in the direction of 

flow, the component of the resultant 

force in this direction is zero. Referring 

to the free-body diagram shown in Fig. 7 

and noting that the vertical component of 

the resultant force acting on the column 

of liquid is zero, we may write 

 
Fig. 7 Horizontal, parallel flow 



𝒑 𝒈 𝒚∆𝑨 =  𝝆 ∆ 𝑨 

 

𝒑 =  𝝆𝒈 𝒚 =  𝜸 𝒚 

in which γ = ρg = specific weight of the 

liquid. Note that this pressure distribution 

is the same as if the liquid were 

stationary; it is, therefore, referred to as 

the hydrostatic pressure distribution 

 
Parallel Flow in Sloping Channels 

Let us now consider the flow conditions 

in a sloping channel such that there is no 

acceleration in the flow direction, the 

flow velocity is uniform at a channel 

cross section and is parallel to the 

channel bottom; i.e., the streamlines are 

parallel to the channel bottom. Figure 8 

shows the free-body diagram of a column 

of liquid normal to the channel bottom. 

The cross-sectional area of the column is 



ΔA. If θ = slope of the channel bottom, 

then the component of the weight of 

column acting along the column is 

ρgdΔAcos θ and the force acting at the 

bottom of the column is pΔA. There is no 

acceleration in a direction along the 

column length, since the flow velocity is 

parallel to the channel bottom. 

 
Fig. 8 Parallel flow in a sloping 

channel 

 

 Hence, we can write pΔA = ρgdΔAcos θ, 

or p = ρgd cos θ = γd cos θ. 

By substituting d = y cos θ into this 

equation (y = flow depth measured 

vertically, as shown in Fig. 8, we obtain 



 

𝒑 =  𝝆𝒈 𝒚 =  𝜸 𝒚𝒄𝒐𝒔 𝜽𝟐 

Note that in this case the pressure 

distribution is not hydrostatic in spite of 

the fact that we have parallel flow and 

there is no acceleration in the direction of 

flow. However,  if the slope of the 

channel bottom is small, then cos θ _ 1 

and d _ y. Hence, 

𝒑 ≅  𝝆𝒈 𝒅 ≅  𝝆𝒈 𝒚 
In several derivations we assume that the 

slope of the channel bottom is small. 

With this assumption, the pressure 

distribution may be assumed to be 

hydrostatic if the streamlines are almost 

parallel and straight, and the flow depths 

measured  vertically or normal to the 

channel bottom are approximately the 

same. 



 
Curvilinear Flow 

In the previous three cases, the 

streamlines were straight and parallel to 

the channel bottom. However, in several 

real-life situations, the streamlines have 

pronounced curvature. To determine the 

pressure distribution in such flows, let us 

consider the forces acting in the vertical 

direction on a column of liquid with 

cross-sectional area ΔA, as shown in Fig. 

9. 

 
 

Fig, 9 curvilinear flows 



 
𝒑

𝜸
= (𝒓𝟐 − 𝒓)𝒄𝒐𝒔𝜽 +  

𝒂𝑵

𝒈
 (𝒓𝟐 − 𝒓) 

 
 

𝑴𝒂𝒔𝒔 𝒐𝒇 𝒕𝒉𝒆 𝒍𝒊𝒒𝒖𝒊𝒅 𝒄𝒐𝒍𝒖𝒎𝒏
=  𝝆𝒚𝒔∆𝑨 

 
If r = radius of curvature of the 

streamline and V is the flow velocity at 

the point under consideration, then 

𝑪𝒆𝒏𝒕𝒓𝒊𝒇𝒖𝒈𝒂𝒍 𝒂𝒄𝒄𝒆𝒍𝒓𝒂𝒕𝒊𝒐𝒏 =  
𝑽𝟐

𝒓
 

And 



𝑪𝒆𝒏𝒕𝒓𝒊𝒇𝒖𝒈𝒂𝒍 𝒇𝒐𝒓𝒄𝒆 = 𝝆𝒚𝒔∆𝑨 
𝑽𝟐

𝒓
 

 
 
Dividing the centrifugal force by the area 

of the column and converting the 

pressure to pressure head, we obtain the 

following expression for the pressure 

head, ya, acting at the bottom of the 

liquid column due to centrifugal 

acceleration 

𝒚𝒂 =  
𝟏

𝒈
𝒚𝒔

𝑽𝟐

𝒓
 

The pressure due to centrifugal force is in 

the same direction as the weight of 

column if the curvature is concave, as 

shown in Fig. 9 a, and it is in a direction 

opposite to the weight if the curvature is 

convex (Fig. 9b). Therefore, the total 



pressure head acting at the bottom of the 

column is an algebraic sum of the 

pressure due to centrifugal action and the 

weight of the liquid column, i.e., 

𝑻𝒐𝒕𝒂𝒍 𝒑𝒓𝒆𝒔𝒔𝒖𝒓𝒆 𝒉𝒆𝒂𝒅 =  𝒚𝒔(𝟏 ∓
𝟏

𝒈

𝑽𝟐

𝒓
)       

( a) 
 
 
A positive sign is used if the streamline 

is concave, and a negative sign is used if 

the streamline is convex. Note that the 

first term in Eq. a is the pressure head 

due to static conditions while the second 

term is the pressure head due to 

centrifugal action. Thus, the liquid in a 

piezometer inserted into the flow rises, as 

shown in Fig. 9a. In other words, 

pressure increases due to centrifugal 



action in concave flows and decreases in 

convex flows (Fig. 9b). 

 
 

 
 

 

 

 

 

 

Flow Resistance 

The resistance offered by the channel 

bottom and sides to free-surface flows 

aN/g 



and its effects on the velocity distribution 

in an excellent manner as follows : 

“The water of straight rivers is the 

swifter the farther away it is from the 

walls, because of resistance. Water has 

higher speed on the surface than at the 

bottom. This happens because water on 

the surface borders on air which is of 

little resistance, because lighter than 

water, and the water at the bottom is 

touching the earth which is of higher 

resistance, because heavier than water 

and not moving. From this follows that 

the part which is more distant from the 

bottom has less  resistance than that 

below. Because of the variation in 

resistance along the wetted perimeter and 

because of the shape of the channel cross 

section, secondary currents are usually 

set up in free-surface flows even if the 



channel is straight. In addition, the shear 

resistance offered to flow at the channel 

boundaries is not uniform. However, to 

simplify the analysis, we will assume that 

the flow is one-dimensional – i.e., there 

are no secondary currents in the flow and 

the shear resistance to flow at the 

boundaries is uniform. 

Flow Resistance Equations 

In this section, we present several 

equations relating the channel resistance 

to various flow variables. For a general 

derivation, we first derive an equation for 

non uniform flow and then simplify it for 

uniform flow as a special case of non 

uniform flow. 

Chezy Equation 

To derive the Chezy equation, we make 

the following assumptions: The flow is 



steady; the slope of the channel bottom is 

small; and the channel is prismatic. 

Let us consider a control volume of 

length Δx, as shown in Fig. 10. At the 

upstream side of this control volume, let 

the distance be x, flow velocity be V , and 

the flow depth be y. Then, the values of 

these variables at the downstream side 

are x + Δx, V + (dV/dx)Δx, and y + 

(dy/dx)Δx).  

The following forces are acting on the 

control volume: pressure force on the 

upstream side, F1; pressure forces on the 

downstream side, F2 and F3; a 

component of the weight of water in the 

control volume in the downstream 

direction, Wx; and the shear force, Ff , 

acting on the channel bottom and the 

sides. Referring to Fig. 10, the expression 



for these forces may be written as 

follows 

 

𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒 𝑓𝑜𝑟𝑐𝑒, 𝐹1 =  𝛾 𝐴 𝑧            (1) 

in which ¯z = depth of the centroid of 

flow area A below the water surface and 

γ = specific weight of water. The 

component of the weight of water in the 

downstream direction, 

𝑊𝑥 =  𝛾 𝐴 ∆𝑥 sin 𝜃        (2) 

 
in which θ = angle between the channel 

bottom and the horizontal axis. Since the 

channel-bottom slope is assumed to be 

small, sin θ _ tan θ _ −dz/dx. 

Note that the negative sign is due to the 

fact that z decreases as x increases. 

Hence, we may write Eq. b as 

𝐹2 =  𝛾 𝐴 𝑍               (3) 



𝐹3 =  𝛾 𝐴 
𝑑𝑦

𝑑𝑥
 ∆𝑥        (4) 

 
Note that in the expression for F3, we 

have neglected the higher-order term, 

which corresponds to the small triangle 

at the top. If the average shear stress 

acting on the channel bottom and sides is 

τo, then the shearing force 

 

 
Fig. 8  Definition sketch 

 
𝐹𝑓 = 𝜏𝑜𝑃∆𝑥              (5) 

in which P = wetted perimeter. Referring 

to Fig 8, the resultant force, Fr, acting on 



the control volume in the downstream 

direction is 

𝐹𝑟 = ∑ 𝐹 = 𝐹1 − (𝐹2 + 𝐹3) + 𝑊𝑥 − 𝐹𝑓          

(6) 

Substituting Eqs1 through 5 into Eq. 6 

and simplifying, we obtain 

 

𝐹𝑟 = − 𝛾𝐴∆𝑥 (
𝑑𝑦

𝑑𝑥
+

𝑑𝑧

𝑑𝑥
+

𝑃 𝜏𝑜

 𝛾 𝐴
)                     

(7) 

 
∑ 𝐹 = 𝑚𝑎𝑥      

𝐹1 + 𝜌𝑔 𝐴 ∆𝑥 sin 𝜃 − 𝑝 ∆𝑥 𝜏𝑜 −  𝐹2 =
𝑚𝑎𝑥     

In uniform flow  ax=0 , F1=F2, v1=v2 ,  

no change in  sin Ɵ= So 

𝜌𝑔 𝐴 ∆𝑥𝑆𝑜 = 𝑝 ∆𝑥𝜏𝑜  

𝜏𝑜 =  𝛾 
𝐴

𝑝
 𝑆𝑜 =  𝛾 𝑅 𝑆𝑜 



From dimensional analysis  𝜏𝑜 =

𝑎 𝜌𝑣2𝑎𝑛𝑑 𝑎 =  
𝑓

8
 

f= coeff. of friction 

 

𝑎 𝜌𝑣2 =  𝛾 𝑅 𝑆𝑜 
𝑓

8
 𝜌𝑣2 =  𝜌𝑔 𝑅 𝑆𝑜 

𝑣 =  √
8 𝑅 𝑆𝑜

𝑓
 

             

 
This equation may be written as 

𝑉 = 𝐶√𝑅 𝑆𝑓          (a)    

in which C = Chezy constant   

Note that Eq. a is valid for non uniform, 

steady flow.    

𝑉 = 𝐶√𝑅 𝑆𝑜             (b) 



For uniform flow we use Eqs b is valid. 

It is clear from Eq. a or b that C has 

dimensions of √ length/time, as 

compared to the Darcy Weisbach friction 

factor, f, which is dimensionless. 

However, like f, C depends upon the 

channel roughness and the Reynolds 

number, Re. In addition, it may depend 

upon the channel cross-sectional shape as 

well, although this dependence appears 

to be small and may be neglected. 

Because the channel roughness may vary 

over a wide range, its effect on C has not 

been as thoroughly investigated as that 

on f.     

Let us now compare the Chezy equation, 

Eq. a, for open channels with the Darcy-

Weisbach friction formula for pipes, 



ℎ𝑓 = 𝑓
𝐿

𝐷
 
𝑣2

2𝑔
 

in which hf = head loss in a pipe of 

diameter D and length L. The slope of the 

energy grade line, S = hf/L. Therefore, we 

may write this equation as 

 

𝑉 = √
2𝑔 𝐷 𝑆

𝑓
 

Noting that the hydraulic radius, R, for a 

pipe is equal to D/4, Eq. a 

Becomes 

𝑉 = 𝐶√
 𝐷 𝑆

4
 



It follows from the above two equations 

that   

𝐶 = √
 8𝑔

𝑓
  

Figure 11 shows the Moody diagram 

plotted with C as the ordinate instead of  

f . This diagram is divided into three 

regions: hydraulically smooth, transition, 

and fully rough. A flow may be 

considered hydraulically smooth even 

though the channel surface is rough 

provided the projections of the surface 

roughness are covered by the laminar 

sublayer. As the Reynolds number 

increases, the thickness of this layer 

decreases and the effect of roughness 

projections on flow becomes important. 

Then, the flow is in the transition region. 

However, when the roughness 

projections are not covered by the 



viscous sub-layer and dominate the flow 

because losses are due to form drag, flow 

may be classified as fully rough. These 

flow types may be classified based on the 

value of a dimensionless number, Rs = 

kV ∗/ν. In this expression, ν is the 

kinematic viscosity of the liquid; k is a 

characteristic length parameter for the 

size of the channel-surface roughness; 

and, V ∗ is the 

shear velocity, which is defined as 

𝑉∗ = √
𝜏𝑜

𝜌
= √𝑔 𝑅 𝑆𝑓  

 



 
Fig. 11 Modified Moody diagram 

 

The flow is considered smooth if Rs < 4; 

transition if 4 < Rs < 100; and fully 

rough if Rs > 100. The expressions for C 

for smooth and rough flows derived from 

the experimental data on flow through 

pipes are: 

 



Smooth flows 

𝐶 = 28.6 𝑅𝑒
1/8

               𝑖𝑓 𝑅𝑒 < 105 

𝑓 =
0.316

𝑅𝑒1/6           Blasis formula 

And       

𝐶 = 4√2𝑔  𝑙𝑜𝑔10(
𝑅𝑒√8𝑔

2.51 𝐶
)              𝑖𝑓 𝑅𝑒

> 105 
1

√𝑓
= 2 log √𝑓 − 0.8             Karman 

Prandtle equation 

 

Rough flows 

𝐶 = −2√8𝑔  𝑙𝑜𝑔10(
𝑘𝑠

12𝑅
+

2.5

𝑅𝑒√𝑓
) 

For  Re > 105 
1

√𝑓
= −2 log

𝑘𝑠

𝐷
+ 1.14         Karman 

Prandtle equation 

For transition zone  



   
1

√𝑓
= −2 log

𝑘𝑠

𝐷
= 1.14 −  2 log (1 +

9.35 
𝐷/𝑘𝑠

𝑅𝑒 √𝑓
)            

Colorbrook- White function 

 

The preceding equations are valid only 

for small channels with fairly smooth 

surfaces since these are based on pipe 

data. Empirical relationships and field 

observations should be employed for 

large channels with rough flow surfaces. 

Manning Equation 

Because  C depends upon several 

parameters in addition to the channel 

roughness. Based on the field 

observations, 

𝐶𝛼 𝑅1/6 

Manning equation 

𝑉 =
1

𝑛
 𝑅2/3𝑆𝑓

0.5          © 



in which n = Manning coefficient. This is 

the Manning equation, which has been 

very widely used. 

Again note that n is not a dimensionless 

constant and has the dimensions of 

(length)1/3/time. 

The value of n depends mainly upon the 

surface roughness, amount of vegetation, 

and channel irregularity, and, to a lesser 

degree, upon stage, scour and deposition, 

and channel alignment. 

Christensen investigated the range of 

validity of the Manning equation 

assuming that for the friction factors of 

closed conduits are valid for the free-

surface flows. By substituting the 

approximation 
𝐶

√𝑓
=  2.916 (

𝑅

𝑘
)1/6 



For rough turbulent flows in circular 

conduits into Eq. below and noting that 

for closed conduits R = D/4, we obtain 

𝑉 = √
2𝑔 𝐷 𝑆

𝑓
 

𝑉 = 8.25 √𝑔

𝑘1/6 𝑆0.5 𝑅2/3       (d) 

 

Equation (d )has the following 

advantages over Eq. ©: Manning n is 

difficult to estimate since it does not have 

any physical meaning. On the other hand, 

k  is  physically based and is directly 

related to the size of surface roughness, 

which can be measured. In addition, 

since k is raised to the one sixth power, 

an error in  estimating its value has a 

considerably less effect on the computed 



value of V as compared to that introduced 

by a similar error in the estimation of n. 

Manning coefficient, n, increases for 

very shallow depths where the lining 

roughness height approaches the depth of 

flow. For lined channels, a constant n 

value is acceptable; however, to account 

for shallow flow depths, a higher n value 

should be considered.  

 

𝑛 =
(

𝑅
0.3048

)1/6

8.6 + 19.97 log(
𝑅

𝑑50
)
 

 

 

where R = hydraulic radius, in m. 

For vegetation-lined channels, a constant 

n may not be suitable due to significant 

variation in the amount of submergence 



of the vegetation with changes in flow 

and the resulting shear stress. Therefore,  

the following equation for n for grass-

lined channels as a function of hydraulic 

radius and tractive force, 

𝑛 =
(

𝑅
0.3048

)1/6

𝐶 + 19.97 log[(
𝑅

0.3048
)]1.4 𝑆𝑜

0.4
 

where So is the channel bottom slope, 

and C is a dimensionless factor 

depending on the class of vegetation and 

R is in m. 

 

 

Computation of Normal Depth 

To analyze open channel flow, it is 

usually necessary to know the normal 

depth, yn. A number of procedures for 

computing the normal depth in a given 



channel for a specified discharge are 

discussed in this section. We will 

consider only the   Manning equation in 

our discussions since it is very widely 

used. These discussions are valid for the 

Strickler equation as well if we replace n 

by 1/ks. 

The Manning equation for uniform flow 

in terms of discharge may be written  

𝑄 = 𝑉𝐴 =
1

𝑛
 𝐴 𝑅2/3𝑆𝑜

0.5 

 

𝐾 =
1

𝑛
 𝐴 𝑅2/3  Note that K is a function 

of the normal depth, properties of the  

channel section and Manning n. 

 

𝐴 𝑅2/3 =
𝑛 𝑄

𝑆𝑜
1/2

  

 



in which the left-hand side is referred to 

as the section factor. Thus, for the 

specified values of n, Q, and So, we solve 

this equation to determine the normal 

depth in a given channel. 

Design Curves 

These curves are presented in Fig. 3 for a 

trapezoidal and for a circular channel 

section. If we want to determine the 

normal depth for a specified discharge in 

a given channel section, then we know Q, 

n, and So. Therefore, we can compute the 

right-hand side of Eq. given above.  Let 

us divide this computed value by B8/3 

if the channel section is trapezoidal and 

by D8/3 if the channel cross section is 

circular. The resulting value is then equal 

to AR2/3/B8/3 for a trapezoidal section and 

equal to AR2/3/D8/3 for a circular cross 

section. Now, yn/Bo or yn/Do 



corresponding to the value of AR2/3/B8/3 

=0  or  AR2/3/D8/3=0 may be directly read 

from Fig. 3 

Fig 3 Curves for the computation of 

normal depth 

Example  

Compute the normal depth in a 

trapezoidal channel having a bottom-

width of 10 m, side slopes of 2H to 1V 

and carrying a flow of 30 m3/s. The slope 



of the channel bottom is 0.001 and n = 

0.013.        Ans  yn=1.1 

Equivalent Manning Constant 

In the previous discussion, we assumed 

that the flow surface at a channel cross 

section has the same roughness along the 

entire wetted perimeter. However, this is 

not always true. For example, if the 

channel bottom and sides are made from  

different materials, then the Manning n 

for the bottom and sides may have 

different values. To simplify the 

computations, it becomes necessary to 

determine a value of n, designated by ne, 

that may be used for the entire section. 

This value of ne is referred to as the 

equivalent n for the entire cross section. 

Let us consider a channel section that 

may be subdivided into N subareas 

having wetted perimeter Pi and Manning 



constant, ni, (i = 1, 2, · · · ,N). By 

assuming that the mean flow velocity in 

each of the subareas is equal to the mean 

flow velocity  in the entire section, the 

following equation may be derived: 

𝑛𝑒 = (
∑ 𝑃𝑖𝑛𝑖

3/2

∑ 𝑃𝑖
)2/3 

 

in which subscript i refers to values for 

the ith subarea. Similarly, the following 

expression for the equivalent Manning 

constant ne may be derived by assuming 

that the total force resisting the flow is 

equal to the sum of forces resisting the 

flow in each subarea 

𝑛𝑒 = (
∑ 𝑃𝑖𝑛𝑖

2

∑ 𝑃𝑖
)1/2 



By utilizing the fact that the total 

discharge is equal to the sum of the 

discharge in each subarea 

 

𝑛𝑒 =
𝑃 𝑅5/3

(
∑ 𝑃𝑖𝑅𝑖

5/3

𝑛𝑖
)

 

Compound Channel Cross Section 

A compound cross section may be 

defined as a section in which various 

subareas  have different flow properties, 

e.g., surface roughness, etc. A natural 

stream having overbank flow during a 

flood (Fig. 4) is a typical example of a 

compound section. The roughness of the 

overbanks is usually higher than that of 

the main channel; and, therefore, the 

flow velocity in the main channel is 

higher than that in the  



The analysis of flow in a compound 

section becomes complex if the flow in 

each subarea is considered separately. 

This requires the use of a two- or three 

dimensional model or to apply a one-

dimensional model separately to each 

subarea by considering the flow in each 

sub-area as parallel flow and allowing for 

the exchange of mass and momentum 

between the adjacent subareas. In a 

straight channel, the water surface should 

be level over the entire cross section, 

since the pressure along any horizontal 

line must be constant although the flow 

velocity may vary from one subarea to 

the next. Due to different flow velocity, 

the level of the  energy grade line is 

different in each subarea. Thus, there is 

no common level for the energy grade 

line for the entire section. To avoid this 



complexity, we derive in this section 

expressions for the energy coefficient, α, 

and for Sf in terms of the conveyance 

factor, K, of the subareas. With these 

expressions, the flow in a  compound 

section may be computed without 

knowing the individual flows in each 

subarea. 

Let us subdivide the compound section 

into N subareas. We want to derive an 

expression for the energy coefficient, α, 

such that the velocity head for the entire 

section = αVm 2/ 2g , in which Vm = 

mean flow velocity in the compound 

section. 

 



 
 

Fig. 4 

 

 

 

 

 

 

 

 

 

 

 



 

 

     

 

     

      

 

Chapter three 

GRADUALLY VARIED FLOW 

We discussed uniform flow in which the 

flow depth remains constant with 

distance. Such flows occur only in long 

and prismatic channels (i.e., the channel 

cross section and bottom slope do not 

change with distance). In real-life 

projects, however, channel cross sections 

and bottom slopes are not constant with 

distance in natural channels and these are 

varied in constructed channels to suit the 



existing topographical conditions for 

economic reasons. 

In addition, hydraulic structures are 

provided for flow control. These changes 

in the channel geometry produce non 

uniform flows while changing from one 

uniform-flow condition to another. Such 

flows are called gradually varied flows if 

the rate of variation of depth with respect 

to distance is small, and rapidly varied 

flows if the rate of variation is large.  In 

other words, the flow depth changes   

gradually over a long distance in 

gradually varied flows and in a short 

distance in rapidly varied flows. Since 

the analysis of gradually varied flows is 

usually done for long channels, the 

friction losses due to boundary shear 

have to be included. These losses, 

however, may be neglected in the 



analysis of rapidly varied flows because 

the distances involved are short. In 

addition, the pressure distribution in 

gradually varied flow may be assumed 

hydrostatic because the streamlines are 

more or less straight and parallel. 

However, this is not the case in rapidly 

varied flows where significant 

acceleration normal to flow direction 

may be produced by sharp curvatures in 

the streamlines. 

Governing Equation 

The gradually varied flow equations in a 

prismatic channel having no lateral 

inflow or outflow are derived in this 

section by making the following 

simplifying assumptions: 

1. The slope of the channel bottom is 

small.  



2. The channel is prismatic channel and 

there is no lateral inflow or outflow from 

the channel. 

3. The pressure distribution is hydrostatic 

at all channel sections. 

4- The head losses in gradually varied 

flow may be determined by using the 

equations for head losses in uniform 

flows. 

These assumptions are usually valid for 

gradually varied flows. A channel with 

changing cross section or bottom slope 

may be divided into piecewise prismatic 

channels. The slope of the channel 

bottom may be assumed small if it is less 

than 5 percent. In such a case, sin θ ~ tan 

θ ~ θ, in which θ = angle of the channel 

bottom with horizontal, and the flow 

depths measured vertically or normal to 

the bottom are approximately the same. 



The curvature of the streamlines in 

gradually varied flows is usually small 

and thus the assumption of hydrostatic 

pressure distribution is valid. The water-

surface profiles measured during 

hydraulic model   investigations and 

during field observations compare 

satisfactorily with those computed by 

using the head-loss equations for steady 

uniform flow. 

 

By referring to Fig. 3-1, the total head at 

a channel section may be written as 



 

Fig 3-1 defintion scale 

 

𝑯 = 𝒛 + 𝒚 +
𝜶𝑽𝟐

𝟐𝒈
                                                      

(3-1) 
 

in which H = elevation of the energy 

grade line above the datum; z = elevation 

of the channel bottom; y = flow depth; V 

= mean flow velocity, and α = velocity-

head coefficient. Let us consider 



distance, x, as positive in the down- 

stream flow   direction. By differentiating 

both sides of Eq. 3-1 with respect to x, 

and expressing V in terms of discharge, 

Q, we obtain 

 
𝒅𝑯

𝒅𝒙
=

𝒅𝒛

𝒅𝒙
+

𝒅𝒚

𝒅𝒙
+

𝜶𝑸𝟐

𝟐𝒈

𝒅

𝒅𝒙
( 

𝟏

𝑨𝟐)                                              

(3-2)                         

 

Now, by definition 
𝒅𝑯

𝒅𝒙
= −𝑺𝒇

  

                                                                                                                                            

(3-3) 
𝒅𝒛

𝒅𝒙
= −𝑺𝒐

  

 

in which Sf = slope of the energy-grade 

line and So = slope of the channel 

bottom. There is a negative sign with Sf 



and So since both H and z decrease as x 

increases. Now, 

 
𝐝

𝐝𝐱
(

𝟏

𝐀𝟐) =
𝐝

𝐝𝐀
( 

𝟏

𝐀𝟐)
𝐝𝐀

𝐝𝐱
    

 

           =
𝒅

𝒅𝑨
( 

𝟏

𝑨𝟐)
𝒅𝑨

𝒅𝒚

𝒅𝒚

𝒅𝒙
                                  ( 3-4) 

          =  −(
𝟐𝑩

𝑨𝟑)
𝒅𝒚

𝒅𝒙
  

 

since  dA/dy = B,. Note that if the channel 

is not prismatic, then 

 
𝒅𝑨

𝒅𝒙
=

𝝏𝑨

𝝏𝒙
+

𝝏𝑨

𝝏𝒚

𝒅𝒚

𝒅𝒙
                                              (3-5) 

 

and Eqs. 3-4 and 3-5 are modified 

accordingly,   by substituting Eqs. 3-3 

and 3-4 into Eq. 3-2, and rearranging the 

resulting equation, we obtain 



 
𝒅𝒚

𝒅𝒙
=

𝑺𝒐−𝑺𝒇

𝟏−(𝜶 𝑩 𝑸𝟐)/(𝒈 𝑨𝟑)
                                       (3-6) 

 

This equation describes the rate of 

variation of y with x. By utilizing the 

expression for Froude number, Fr, , the 

second term in the denominator may be 

written as 

𝜶𝑩 𝑸𝟐

𝒈 𝑨𝟑
=

(
𝑸
𝑨

)𝟐

(𝒈𝑨)/(𝜶 𝑩 )
=  𝑭𝒓

𝟐 

 

Hence, Eq. 3-5 becomes 
𝒅𝒚

𝒅𝒙
=

𝑺𝒐−𝑺𝒇

𝟏−(𝑭𝒓
𝟐)

                                                     (3-7) 

 
 

We will use this equation in the 

following sections to draw qualitative 



conclusions about the water-surface 

profiles. 

 

Classification of Water-Surface 

Profiles 

We use the following notation to 

designate different water surface profiles: 

A letter refers to the type of the channel 

bottom slope and a numeral to the 

relative position   of the profile with 

respect to the critical-depth line (CDL) 

and the normal-depth   line (NDL). The 

critical depth and the normal depth are yc 

and yn, respectively. 

Channel-bottom slopes are classified into 

the following five categories: 

mild, steep, critical, horizontal (zero 

slope) and adverse (negative slope). The 

first letter of these names refers to the 

type, i.e., M for mild, S for steep, C for 



critical,  H for horizontal and A for 

adverse slope. 

The bottom slope of a channel is called 

as mild slope if the uniform flow is 

subcritical (i.e., yn > yc); for the specified 

discharge and Manning n; it is critical 

slope if the uniform flow is critical (i.e., 

yn = yc); and it is steep slope if the 

uniform flow is supercritical (i.e., yn < 

yc). It is apparent that the normal depth is 

infinite if the bottom slope is horizontal 

and it is nonexistent if the bottom slope 

is negative. To summarize, the channel 

bottom slope is called 

 

• Mild if yn > yc; 

     • Steep if yn < yc; and 

     • Critical if yn = yc. 

Now, let us discuss how to designate the 

relative position of the surface profile. 



For the mild and steep slopes, the 

normal-depth and critical-depth lines 

divide the space above the channel 

bottom into three regions, as shown in 

Fig. 3-2. However, for the adverse, 

horizontal, and critical bottom slopes, 

there are only two regions since the 

normal depth does not exist, is infinite, or 

is the same as the critical depth, 

respectively. The region above both lines 

is designated as Zone 1; that between the 

upper and lower lines is designated as 

Zone 2, and the one between the lower 

line and the channel bottom is designated 

as Zone 3. Note that the upper line is the 

normal-depth line if the channel bottom 

slope is mild, and the upper line is  the 

critical-depth line if the bottom slope is 

steep. 



 
Fig 3-2 Zones for classification of 

surface profiles 

 

Thus, we have 13 different types of 

surface profiles: three for the mild slope, 

three for the steep slope, two for the 

critical slope (zone 2 does not exist since 

yn = yc and we do not consider the 

critical-depth line as a surface profile); 

two for the   horizontal slope (zone 1 

does not exist since yn = ∞), and two for 



the adverse slope (there is no zone 1, 

since yn does not exist). 

Figure 3-3 shows different zones and 

profiles for all five types of bottom 

slopes. 

 



Fig. 3-3 Water surface profiles 

 

The energy-grade line, water surface, and 

channel bottom are parallel to each other 

in uniform flow; i.e., Sf = Sw = So, when y 

= yn. Therefore, it is clear from the 

Manning or Chezy equation that for 

specified discharge, Q, 

 Sf > So if y < yn.                             (3 − 

8) 

and 

Sf < So if y > yn                              (3 − 9) 

By using these two inequalities, we 

determine the sign of the numerator of 

Eq. 3-7 and whether the flow is 

subcritical (Fr < 1) or supercritical (Fr > 

1), we determine the sign of the 

denominator of Eq. 3-7. 



Now, let us discuss how the surface 

profiles approach the normal and critical 

depths and the channel bottom. 

As  y → yn, Sf → So. Therefore, it follows 

from Eq. 3-7 that dy/dx → 0 provided 

 Fr = 1 (i.e., flow is not critical). In other 

words, the surface profile approaches the 

normal-depth line asymptotically. 

As y → yc, Fr → 1 and the denominator 

of Eq. 3-7 tends to zero. Therefore, dy/dx 

tends to ∞ provided Sf  = So. Thus, the 

water-surface profile approaches the 

critical-depth line vertically. Since a 

vertical water surface, is physically 

impossible, we may assume the water 

surface profile approaches the critical-

depth line at a very steep slope. 

Therefore, the question arises as to why 

this conclusion about the vertical water 

surface derived theoretically is not 



realized in the real   world. The reason 

for this discrepancy is that as soon as the 

water surface has a sharp curvature, the 

pressure distribution is not hydrostatic. 

Therefore, Eq. 3-7 is not valid, and any 

conclusions we draw from this equation 

become questionable. As we discussed in 

the previous chapters, a hydraulic jump is 

formed when the flow changes from 

supercritical to subcritical. 

In a hydraulic jump, the flow surface has 

a steep gradient since it passes through 

the critical depth line. 

As y→∞, V → 0, and consequently both 

Fr and Sf tend to zero. Hence, it follows 

from Eq. 3-7 that dy/dx → So for very 

large values of y. Since we are assuming   

that So is small, we may say that the 

water surface profile almost becomes 

horizontal as y becomes large. 



Now, let us discuss what happens when 

the water surface approaches the channel 

bottom, i.e., y → 0. From the Chezy 

equation, it follows that 


